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Abstract: Equilibrium bifurcations arise from sign changes of Jacobian determinants, as parameters
are varied. Therefore we address the Jacobian determinant for metabolic networks with general re-
action kinetics. Our approach is based on the concept of Child Selections: each (mother) metabolite
is mapped, injectively, to one of those (child) reactions that it drives as an input. Our analysis dis-
tinguishes reaction network Jacobians with constant sign from the bifurcation case, where that sign
depends on specific reaction rates. In particular, we distinguish “good” Child Selections, which do not
affect the sign, from more interesting and mischievous “bad” children, which gang up towards sign
changes, instability, and bifurcation.
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1. Introduction

One of the major obstacles in the study of dynamical systems arising from chemical reaction net-
works is the lack of precise quantitative knowledge of the parameters involved. For this reason, a
natural approach is to connect dynamical properties with the network structure, only. In fact, this idea
has a long tradition, in chemical reactions settings. Pioneering works by Horn&Jackson [1] and Fein-
berg [2,3] have been directed towards sufficient network conditions to assert existence and uniqueness
of a stable equilibrium. The concept of deficiency has been developed towards this purpose. Further
network features such as injectivity [4–7] and concordance [8, 9] emerged in this context to forbid
multistationarity. In particular, saddle-node bifurcations are excluded.

In another direction, in 1981 Thomas [10] conjectured a necessary network condition for multi-
stationarity. In particular, certain positive loops in the network were identified as necessary network
motives to sustain multistationarity. The conjecture was then fully proven in mathematical settings by
Soulé [11]. Refined conditions for restricted classes of networks have been further studied till present
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Figure 1. The network represents the central carbon metabolism of Escherichia coli. This
figure has been taken from [19] and the graphical representation is courtesy of Anna Kar-
nauhova. The inflow feed reaction is named f1. Outflow exit reactions are labeled d1 − d6
and dd1 − dd9. Here, for image simplicity, a reversible arrow reaction m ←→ m̃ encodes
two different opposite reactions. Metabolites PEP, PYR and CO2 have been graphically
repeated, for sake of clarity of the picture.

days. See [12–14], among many others.
An excellent compendium of the various approaches to multistationarity questions can be found

in [15], where the authors also presented and clarified the important related work of Ivanova [16–18],
independently developed in the ‘70s and unfortunately not easily accessible to english readers.

Focusing on metabolic networks, the novelty of our present contribution is in two regards. Firstly,
we fully characterize on a graphical level the sign of the determinant of the Jacobian matrix. Secondly,
we provide a recipe to detect sign changes of the Jacobian determinant in quite general examples. This
implies the identification of parameter areas for equilibria bifurcations, leading to stability changes
and multistationarity.

Metabolism is central to life. A metabolic process is a sequence of chemical reactions designed to
transform nutrients into energy. A prominent example of a metabolic network is the central carbon
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metabolism of Escherichia coli, figure 1. The network depicts the metabolic transformation of glucose,
which allows the production of energy. Furthermore, this network is widely used as a general model
for cellular respiration, due to the fact that E. coli are genetically well-known and easy to treat. We will
concentrate on this network in Section 6. However, this reference example helps us at first to focus on
some mathematical features of metabolic networks.

In particular, we underline (?):

1. The stoichiometric coefficients in metabolic networks are mostly {1,0}. In the E. coli network in
figure 1 they are only {1,0}.

2. The number of metabolites involved in a reaction is considerably low compared to the size of
the network. The E. coli network in figure 1 consists of 30 metabolites interacting through 58
reactions. The maximum number of metabolites involved in a reaction is four (e.g. reaction 14),
and many reactions involve only two metabolites (e.g. reaction 10).

3. The reaction rate functions (kinetics) describe the mathematical form of the reactions. Metabolic
networks, such as the one in figure 1, represent only the metabolic transformations without con-
sidering the enzymes network. That is, enzymes and other secondary chemicals do not appear
explicitly in the network. The enzymes are usually taken in account by using enzymatic kinetics
(e.g. Michaelis-Menten) instead of elementary kinetics (e.g. mass action).

Using the above outline as a guide, we can begin to discuss the details of our approach.

We consider general metabolic chemical reaction networks Γ with M metabolites and N reactions.
For notation, we use labels A, B,C,D, ... for metabolites and 1, 2, 3, ... for reactions. We call M the set
of metabolites and E the set of reactions, such that |M| = M and |E| = N. We use the small letter
m ∈M for a generic metabolite and the small letter j ∈ E for a generic reaction.

A chemical reaction j is represented as

j : s j
1m1 + ... + s j

MmM −→
j

s̄ j
1m1 + ... + s̄ j

MmM, (1.1)

with nonnegative stoichiometric coefficients s j, s̄ j ∈ R. In a metabolic context, we repeat, these coeffi-
cients are mostly 0 or 1.

A metabolite m is called an input or a reactant of the reaction j, if s j
m , 0. Respectively, m is called

an output or a product of the reaction j, if s̄ j
m , 0. We say, conversely, that a reaction j is outgoing

from the metabolite m if m is an input of reaction j. We say that a reaction j is an ingoing reaction of
the metabolite m if m is an output of j.

Metabolic systems are intrinsically open systems, that is, they exchange chemicals with the outside
environment by feed and exit reactions. Within our settings, the constant feed reactions, or inflows,
are reactions with no inputs (s j = 0) and the exit reactions, or outflows, are reactions with no outputs
(s̄ j = 0).

Graphically, we represent a reaction

j : A + 2B −→
j

C, (1.2)

where we have omitted stoichiometrically zero terms, as follows.
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(1.3)

In (1.3), the arrow orientation is inherited from (1.2). The stoichiometric coefficient 2 of metabolite
B is indicated as a weight in the lower tail of the directed arrow j, and stoichiometric coefficients 1
are omitted, as well as non-participating other reactants. In particular, this graphical representation
considers the metabolites as vertices and the reactions as arrows of the network, and it is one natural
representation widely used in chemistry, biology, and mathematics.

Explicit autocatalytic reactions j are defined as reactions for which a metabolite m is both an input
and an output of the reaction. In symbols, s j

m, s̄
j
m , 0, for at least one metabolite m. Throughout

this paper, we exclude explicit autocatalytic reactions. In particular, self-loops are not allowed in the
graphical representation of the network.

This assumption is only made for mathematical simplicity. Explicit autocatalysis can be treated via
intermediaries. For example, the reaction

j : m −→
j

2m (1.4)

is explicit autocatalytic. However, the same chemical process can be modeled without explicit autocat-
alytic reactions as

m −→
j1

m0 −→
j2

2m, (1.5)

with m0 as an intermediary.

To construct the M × N stoichiometric matrix S , let us consider any reaction j. We associate to any
stoichiometric coefficient s j

m of an input metabolite m of the reaction j a negative stoichiometric entry
of the stoichiometric matrix S, that is:

S m j := −s j
m , for m input of j. (1.6)

Conversely, we associate to any stoichiometric coefficient s̄ j
m of an output metabolite m of the reaction

j a positive stoichiometric entry of S, that is:

S m j := s̄ j
m , for m output of j. (1.7)

For example, a monomolecular reaction j is a reaction which possesses as input one single metabolite
m1 and as output one single metabolite m2,

m1 −→
j

m2. (1.8)
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Such a reaction translates into the jth column of the stoichiometric matrix S as

S j =

j


m1 −1
m2 1
m3 0
... ...

mM 0

. (1.9)

Here we have indicated the rows by m1, ...,mM, explicitly. In particular, with this construction we
model a reversible reaction

j : A + B←→
j

C (1.10)

simply as two distinct irreversible reactions

j1 : A + B −→
j1

C and j2 : C −→
j2

A + B. (1.11)

Columns associated with feed reactions contain only positive entries and the ones associated with exit
reactions contain only negative entries. All other columns contain both positive and negative entries.
In the E. coli picture of figure 1, only for image simplicity, a reversible arrow reaction m ←→ m̃
encodes two different opposite reactions.
Stoichiometric matrices of metabolic networks, due to our observations (?), are then sparse matrices
with most entries being {-1, 0, 1}.

Let xm(t) be the time evolution of the concentration of the metabolite m. The isothermal dynamics
of the vector x ∈ RM of the concentrations is described by the system of differential equations

ẋ = f (x) := S r(x). (1.12)

The M × N matrix S is the stoichiometric matrix constructed above. The N-dimensional vector r(x)
represents the reaction rates as functions of x: the kinetics of the system. The feed reactions are
represented by constant functions; i.e.:

r j f (x) ≡ K j f , (1.13)

for a feed reaction j f . Throughout this paper, we pose the following assumptions on the reaction rates
r(x):

1. We assume the reaction rates r j(x) to depend only on those concentrations xm such that the
metabolite m is an input metabolite of reaction j. In particular,

∂r j(x)
∂xm

≡ 0, unless m is an input of j.

Moreover, we use the notation r jm for the nonzero partial derivatives, i.e.,

r jm :=
∂r j(x)
∂xm

, 0

if m is an input of reaction j.
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2. We consider strictly positive monotone reaction rate functions r j(x) ∈ C1, for every j = 1, ...,N:

r j(x) > 0 for x > 0,

and, for the nonzero partial derivatives r jm, strictly positive slopes

r jm > 0.

This monotonicity restriction is indeed satisfied for most, but not all, chemical reaction schemes.

With these assumptions, all required information of the network is encoded in the stoichiometric
matrix S , only. In particular, we do not specify here the mathematical form of the kinetics, remaining
in wide generalities.

Great effort in the mathematical community has been spent in finding network characterizations of
the existence and the uniqueness of equilibrium solutions of (1.12). For extensive reference, see the
comprehensive book by Feinberg [20].

With our approach, we do not address this question at all. In fact, throughout this paper, we assume
the existence of a dynamical equilibrium x∗ that solves

0 = f (x∗) := S r(x∗). (1.14)

The assumption of the existence of a dynamical equilibrium is not smoothly untroubled. In particular,
linear constraints have been implicitly imposed on the reaction rates r, because of (1.14). Note that
these constraints do not necessarily fix the precise value of an equilibrium x∗, and can be considered
posed a priori, so that the existence of the equilibrium is an assumption on the reaction rates r, only.
Here, our analysis is based entirely on the derivatives r jm of the reaction rates and we do not want to be
concerned by the equilibrium constraints (1.14). To avoid this, we must assume a certain independence
of the derivatives r jm from the reaction rates themselves, at the equilibrium. In particular, locally at the
fixed equilibrium, we require the possibility of freely choosing the value of any r jm independently from
each other and from the constraints S r = 0. In this sense, the partial derivatives r jm can be considered
positive free parameters. This requires a certain mathematical complexity of the reaction rates r j. In
fact: too mathematically ‘simple’ kinetics fail to satisfy this assumption.

As an example, for polynomial mass action kinetics, the value of r j(x) and r jm(x) are related, a
priori, at any value x, and for any j and m. In particular, the theory developed here does not fully apply
to mass action kinetics. In contrast, Michaelis-Menten kinetics, more suited for metabolic networks,
satisfies our independence assumption. We present here an exemplification of this fact. The complete
mathematical argument can be found in [21], which is a contribution by Fiedler that shares this premise.
Let us consider the following reaction, whose single input is a metabolite m:

m
1
−→ ... (1.15)

The product of the reaction is irrelevant for this discussion, and it is omitted. The rate of the reaction
1, according to the law of mass action, reads

r1(xm) = k1xm. (1.16)
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Here, k1 is a positive coefficient. The derivative of r1(xm) with respect to xm is then

r1m(xm) =
∂r1

∂xm
(xm) = k1. (1.17)

In particular, at any fixed x̄m, the value r1(x̄m) uniquely determines the derivative r1m(x̄m). Indeed,

r1m(x̄m) =
r1(x̄m)

x̄m
. (1.18)

For general nonlinearities, of course, we may choose r1(x̄m) and r1m(x̄m) independently of each other.
In the special case of Michaelis-Menten kinetics, for example, the rate of reaction 1 is

r1(xm) =
k1xm

1 + a1xm
, (1.19)

where both k1 and a1 are positive parameters, and its derivative reads

r1m(xm) =
k1

(1 + a1xm)2 . (1.20)

This implies that at any fixed x̄m, the value r1m(x̄m) can be chosen as small as needed, independently
from r1(x̄m):

r1m(x̄m)
r1(x̄m)

=
1

(1 + a1 x̄m)x̄m
∈ (0, 1) ·

1
x̄m
. (1.21)

In particular, for large a1 → ∞ we get small r1m → 0, and for small a1 → 0 we get r1m →
r1(x̄m)

x̄m
.

Having fixed the value x̄m requires then to pick k1 := (1+a1 x̄m)r1(x̄m)
x̄m

, for any chosen a1. Note that for the
limit value a1 = 0 we recover the mass action case.

Let us concentrate now on the relevant case in which the fixed x̄ is an equilibrium. In the mass
action case, it is not possible to separate the question of the existence of the equilibrium (related to
the reaction rates r(x̄)) from the question of its stability (related to the derivatives r jm(x̄)), because the
former determines the latter as shown in the analysis above. On the contrary, for more general kinetics
as Michaelis-Menten, the two questions can be addressed separately and independently.

The Jacobian matrix of a dynamical system plays a central role in the stability analysis of equilibria.
The sign of the eigenvalues is an indication of stability; therefore, a change in sign of the determinant
hints at a change in stability and bifurcation phenomena. Let G be the Jacobian matrix of the equilib-
rium system 1.14, that is:

G := fx, with entries Gkh =
∂ fk

∂xh
. (1.22)

Note that the entries Gi j are linear forms in the variables r jm.

The leading question of this paper is the following:

When is det G of fixed sign? (1.23)

That is:
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When - for any choice of positive parameters r jm - does the determinant carry the same sign?

In this paper, we fully characterize, on a graphical level, the answer to the question (1.23). In
particular, in Section 2, we introduce Child Selections and we use the Cauchy-Binet formula to
expand the Jacobian determinant in a polynomial, in which each monomial summand is associated
to a Child Selection. Depending on the sign of the coefficients of these monomials, each Child
Selection is abstractly classified in good or bad. The coexistence of a good and a bad Child Selection
characterizes the condition of indeterminate sign Jacobian. In Section 3, the main Theorem 3.1
abstractly characterizes whether a given Child Selection is good or bad and Section 4 translates this
abstract condition into a graphical network condition. Consequently, Section 5 uses the developed
concepts to find a bifurcation parameter responsible for a change of sign in the Jacobian determinant,
with possible consequent bifurcation phenomena. Section 6 contains an example of an application for
the central metabolism of E. coli. Section 7 and 8 conclude with the discussion and proofs.

2. Cauchy-binet analysis via child selections

For the metabolic chemical reaction system 1.12

ẋ = f (x) := S r(x),

the Jacobian matrix reads
G = fx = S R. (2.1)

The reactivity matrix R of the partial derivatives is an N × M matrix, whose entries R jm are given by:

R jm :=
∂

∂xm
r j(x) =

r jm if ∂r j(x)
∂xm
, 0

0 otherwise
. (2.2)

The entry R jm is nonzero, i.e. R jm = r jm, if and only if the metabolite m is an input of the reaction j.
The algebraic structure of G is thus completely characterized by the network structure, only.

The following definition, originally introduced by Brehm and Fiedler [19], presents a central tool
for this paper.

Definition 1 (Child Selections, mothers, children). A Child Selection is an injective map J : M −→ E,
which associates to every metabolite m ∈ M a reaction j ∈ E such that m is an input metabolite of
reaction j.
We call the reaction j = J(m) a child of m, and the metabolite m = J−1( j) a mother of the reaction j.

Remark 1. It is possible that a metabolite m is an input of j but not a mother of j, due to injectivity of
Child Selections. Indeed, consider the following example:

(2.3)
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In this minimal case, metabolite B is an input of reaction 1, but never a mother: 1 is the only outgoing
reaction from metabolite A. Therefore, due to injectivity, J−1(1) = A.

The following Jacobian analysis, based on the Cauchy-Binet formula, is developed from a previous
result in [19].

Proposition 2.1. Let G be a network Jacobian matrix, in the above settings. Then:

det G =
∑

J

det S J ·
∏
m∈M

rJ(m)m, (2.4)

where S J is the M × M matrix whose mth column is the J(m)th column of S .

Remark 2. Because of the exclusion of explicit autocatalytic reactions from our model, the stoichio-
metric coefficient S m j of an input metabolite m to reaction j is a priori negative. This implies that
any diagonal element of S J is always negative: S J

mm = S mJ(m) < 0 for any Child Selection J and any
metabolite m.

Remark 3. If there are no Child Selections at all, then det(G) ≡ 0 for any choice of parameters r jm.
For example, this is the case of a network where there are more metabolites than reactions. Another
possible example is when two metabolites m1 and m2 are both inputs to one reaction j, and they are
inputs to no other reaction. In such a situation, due to the injectivity requirement in Definition 1, we
automatically have no Child Selections and det(G) ≡ 0 for all parameters. Note that, in metabolic
networks, this is practically never the case due to the omnipresence of outflow reactions.

Via Proposition 2.1, the Jacobian determinant of a metabolic network is a homogeneous multilinear
polynomial in the variables r jm. The possible sign of the polynomial depends on the signs of the mono-
mial coefficients det S J. Hence, it is natural to state the following classification of Child Selections,
according to the sign of the determinant of the reshuffled minor S J.

Definition 2 (Child Selection behavior). Let J be a Child Selection.
We say that J is bad, or J ill-behaves, if sign(det S J) = (−1)M−1.
We say that J is good, or J well-behaves, if sign(det S J) = (−1)M.
If det S J = 0, we say that J zero-behaves.

The choice of the terminology is consistent. In fact, in a metabolic network context, important
classes of Child Selections well-behave, for example all acyclic Child Selections (see Section 4).
Moreover, a ‘stable’ Child Selection J, for which all the eigenvalues of S J have negative real part,
well-behaves. In this sense, a ill-behaving Child Selection is an indication of possible instability.

Example 1: bad child selection
This network represents a bad Child Selection:

(2.5)
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The stoichiometric matrix associated is

S J =

J(A) J(B) J(C)
A −1 0 1

B 1 −1 0
C 1 1 −1

, det S J = +1, (2.6)

with sign(det S J) = (−1)M−1 = (−1)3−1 = +1.

Example 2: good Child Selection
This network represents a good Child Selection:

(2.7)

The stoichiometric matrix associated is

S J =

J(D) J(E) J(F)
D −1 1 0

E −1 −1 0
F 1 0 −1

, det S J = −2, (2.8)

with sign(det S J) = (−1)M = (−1)3 = −1.

At this point, the reader may wonder whether Definition 2 is well-posed in the first place; i.e.,
whether the behavior of a Child Selection depends on the specific labeling of the network. Section 4,
Remark 8, clarifies this point, assuring the well-posedness of the definition.

3. Main result

In metabolic networks, stoichiometric coefficients are mostly 0 and 1. For this reason, we continue
here assuming that S has entries S m j ∈ {−1, 0, 1}. By 2, Remark 2, then, the diagonal entries of the
reshuffled minor S J are S J

mm ≡ −1, for any m. We refer to the Phd thesis [22] for a more general
version of Theorem 3.1, accounting for real stoichiometric coefficients S m j ∈ R.
Here, via a structural analysis of det S J, we characterize whether the given Child Selection J
well-behaves or ill-behaves. Note, however, that the importance of the result is mainly revealed in its
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interpretation, see Section 4.

The Leibniz expansion formula for the determinant, applied to S J, reads

det S J =
∑
π

sgn(π)
∏
m∈M

S J
π(m)m. (3.1)

Again, π indicates permutations of M elements and sgn(π) is the signature of π. Let

E(π) := sgn(π)
∏
m∈M

S J
π(m)m (3.2)

denote the summand associated to the permutation π in the Leibniz expansion. For example, denoting
as Id the identity permutation,

E(Id ) = (−1)M. (3.3)

Let π , Id be a permutation such that E(π) , 0. Combinatorially, the permutation π can be expressed
as the product of ϑ disjoint permutation cycles ci of length li > 1,

π =

ϑ∏
i=1

ci. (3.4)

Definition 3 (good/bad-completions, good/bad-cycles). Given a Child Selection J, we call π a good-
completion if ∏

m: π(m),m

S J
π(m)m = (−1)ϑ. (3.5)

We call π a bad-completion if ∏
m: π(m),m

S J
π(m)m = (−1)ϑ−1. (3.6)

Again, ϑ is the number of cycles in the permutation expansion. If π consists of a single cycle c, i.e. for
ϑ = 1, we call the good (resp. bad)-completion a good(resp. bad)-cycle.

We clarify in the next Section 4 what a completion completes, as it requires some further arguments.
Firstly, given the above definition, we state the main result of this section.

Theorem 3.1. Let J be a Child Selection and let G and B be the number of good and bad completions,
respectively. Then, in the sense of Definition 2,

1. The Child Selection J well-behaves if G > B − 1.
2. The Child Selection J ill-behaves if G < B − 1.
3. The Child Selection J zero-behaves if G = B − 1.

For a Child Selection J, Theorem 3.1 characterizes the sign of det S J in terms of permutation cycles
of the Leibniz expansion (3.1). The following Section 4 relates these permutation cycles to certain
cycles in the network.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7621–7644.
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4. Graphical interpretation of the result

The Metabolite-Reaction graph (MR-graph) is an undirected bipartite graph with two sets of ver-
tices given by the metabolites m1, ...,mM and the reactions j1, ..., jE, respectively. For a metabolite m
participating in a reaction j, edges e = (m, j) are adjacent to a metabolite vertex m and a reaction vertex
j. With this construction, edges in the MR-graph are in a one-to-one relation with the nonzero entries
of stoichiometric matrix S . In particular, with S m j < 0 of

j : m + ... −→
j
... (4.1)

in mind, we call negative the edges e = (m, j) where m is input to j. Conversely, with S m j > 0 of

j : ... −→
j

m + ... (4.2)

in mind, we call positive the edges e = (m, j) where m is output to j. See figure 2 for a comparison
between different kinds of representation graphs for the same network. Under the name Species-
Reaction graph (S R-graph), this was considered by [5] and others.

We proceed with two definitions and a proposition.

Definition 4 (J-selected edges). For any Child Selection J, we call the negative edges e = (m, J(m)) in
the MR-graph J-selected.

Remark 4. In particular, J-selected edges are such that the corresponding stoichiometric entry lies on
the diagonal of S J.

Remark 5. Injectivity of a Child Selection J directly implies that two J-selected edges e1 and e2 never
share a vertex in the MR-graph.

Definition 5 (Completion Cycle). For a Child Selection J, a completion cycle in the MR-graph is a
cycle of length 2l, ` ≤ M, such that ` edges are J-selected.

Remark 6. Equivalently, because of Remark 5 above, a completion cycle is a cycle in the MR-graph of
length 2l, such that ` J-selected edges alternate with ` non J-selected edges.

Proposition 4.1. For any given Child Selection J, there is a one-to-one correspondence between com-
pletion cycles and nonzero permutation cycles; i.e., cycles c such that∏

m: c(m),m

S J
c(m)m , 0. (4.3)

It is now clear what the word ‘completion’ refers to. In fact, any completion cycle is constructed
by completing ` J-selected elements to a cycle of length 2l in the MR-graph. In this sense, a good-
completion π =

∏ϑ
i=1 ci can be seen, in the MR-graph, as a collection of ϑ non-intersecting completion

cycles ci, such that the number of good-cycles has the same parity of ϑ. Respectively, a bad-completion
is a collection of ϑ non-intersecting completion cycles, such that the number of good-cycles has oppo-
site parity of ϑ.
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Examples BIOLOGICAL
MR-GRAPH
Biological

MR-GRAPH
Combinatorial MATRIX

1

J(A) J(B) J(C)
A -1 0 1

B 1 -1 0
C 1 1 -1

2

J(D) J(E) J(F)
D -1 1 0

E -1 -1 0
F 1 0 -1

Figure 2. For the two examples of Child Selections, four different ways of representation:
biological, MR-Graph (in a biological shape), MR-graph (in a combinatorial shape), matrix.
Note that, when labeled, the four representations are equivalent. In the MR-graphs, negative
edges J-selected are indicated with a dotted-dashed line, the sparse dotted grey line indicates
negative edges not J-selected, the continuous black line indicates positive edges. In the
combinatorial shape, the edges J-selected are the horizontal ones. Example 1 possesses two
completion cycles: c1 = A−J(A)−C−J(C)−A and c2 = A−J(A)−B−J(B)−C−J(C)−A,
both bad. Example 2 possesses only one good completion cycle: c = D−J(D)−E−J(E)−D.
Consequently, Example 1 represents a bad Child Selection, and Example 2 represents a good
one.
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Remark 7. From Definition 3 and Proposition 4.1 it follows that, for a completion cycle in the MR-
graph, the parity of the negative edges not J-selected characterizes the cycle being good or bad. In
fact: an odd number of negative edges not J-selected corresponds to a good completion cycle, an even
number corresponds to a bad one.

Remark 8. Obviously, being a network structure, the definition of a completion cycle does not depend
on the specific labeling of the network. Proposition 4.1, together with Theorem 3.1, guarantees in
particular that also Definition 2 does not depend on any labeling and, thus, is well-posed.

Finally, we list some consequences of Theorem 3.1, useful for applications.

Corollary 4.2 (Examples of application). The following statements hold true:

1. Acyclic Child Selections well-behave;
2. A Child Selection possessing one good-cycle, and no other completion cycles, well-behaves;
3. A Child Selection possessing one bad-cycle, and no other completion cycles, zero-behaves;
4. A Child Selection possessing two intersecting bad-cycles, and no other completion cycles, ill-

behaves;
5. Any nonzero Child Selection of a network which possesses only monomolecular reactions and one

single bimolecular reaction
j̃ : A + B −→

j̃
C (4.4)

well-behaves.

In particular, the bad Example 1 falls into the casuistry of the point (4) of Corollary 4.2, and the
good Example 2 into the casuistry of point (2) of Corollary 4.2. Any Child Selection with a single
monomolecular cycle is an example for (3). Such list can be of course enlarged for a given network of
application, to easily detect good and bad Child Selections for bifurcation analysis, as discussed in the
continuation of this paper.

5. Hunting saddle-node bifurcations

Here, we give a simple network condition under which there is the possibility, for certain parame-
ters, of a saddle-node bifurcation of equilibria. We also identify bifurcation parameters responsible for
the change of sign of the determinant and consequent change of stability of any equilibrium.

Theorem 5.1 (Change of Stability). Suppose there exist two Child Selections J1, J2, and a metabolite
mb, such that J1(mb) , J2(mb) and J1(m) = J2(m) for any m , mb. Assume moreover that J1 well-
behaves and J2 ill-behaves. Then the Jacobian determinant of G takes the form

det G = (arJ1(mb)mb − brJ2(mb)mb)rJ1(mn+1)mn+1 ...rJ1(mm)mm + ... , (5.1)

where the omitted terms can be chosen arbitrarily small, and a, b are coefficients of the same sign. In
particular, the parameter

ξ = arJ1(mb)mb − brJ2(mb)mb (5.2)

may serve as a bifurcation parameter for the bifurcation of nontrivial equilibrium solutions of the
system (1.12).
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Theorem 5.1 does not require fixing an equilibrium, and it holds in more general settings.
Nevertheless, for simplicity, we are thinking here of an equilibrium situation. The parameter
ξ = arJ1(mb)mb − brJ2(mb)mb is ‘localized’ in a single metabolite mb. In fact, the change of stability is
driven by the difference between the derivatives with respect to the same metabolite mb of the reaction
rates of two child reactions of mb itself. This suggests a simple biological scheme for controlling the
unstable dimension of the equilibrium.

6. A case study: The central metabolism of E. coli

The central metabolism of E. coli (figure 1) consists of different and interconnected parts. In par-
ticular, the upper part comprises the so-called Pentose phosphate pathway and the Glycolysis. The
bottom ‘cyclic’ part includes the Tricarboxylic acid cycle and the Glyoxylate cycle. We skip here more
detailed biological explanation [23, 24].

In this section, we analyze the network of the central metabolism of E. coli of figure 1. This
network representation is primarily based on the original model proposed by Ishii et al. in [25] with
the modifications suggested by Nakahigashi et al. in [26]. Note that, in biology papers, ‘obvious’
outflow exit reactions, such as d1 - d6 shown here, are frequently omitted. For our mathematical
analysis, however, we are bound to include them. These reactions are the only outgoing reactions of
their input metabolites. Their omission would result in an infinite production of their input metabolites
and in a mathematical degeneracy of the network.

The network possesses 30 metabolites and 58 reactions. The number of Child Selections is on the
order of 107. Nevertheless, we can provide interesting biological insights without computing such a
huge amount of Child Selections. In the same spirit as Section 5, and along its lines, we find two
Child Selections J1 and J2 with opposite behavior, such that J1(mb) , J2(mb) for one single metabolite
mb and J1(m) = J2(m) for all other metabolites m , mb. This situation, via Theorem 5.1, provides
a bifurcation parameter responsible for a change of sign in the Jacobian determinant and possible
consequent saddle-node bifurcations of equilibria.

To find the two Child Selections J1 and J2 as above, we start by imposing certain child reactions j to
certain mother metabolites m. We do this arbitrarily, and only for sake of exemplification. Many other
choices and analogous constructions are, of course, possible. Let us consider only Child Selections
associating the metabolites PEP, PYR, and CO2 to their respective exit reactions, that is:

1. J1(PEP) = J2(PEP) = dd6;
2. J1(PYR) = J2(PYR) = dd7;
3. J1(CO2) = J2(CO2) = d6.

For any Child Selection satisfying these constraints, we can consider the upper part (Pent. Phosph.
Pathway - Glycolysis) and the bottom part (Tricarboxylic acid cycle - Glyoxylate cycle) as separate and
independent. In fact, any Child Selection J satisfying the above constraints 1-3, identifies reshuffled
minors S J, which are block diagonal. This shows that certain qualitative arguments on the dynamics
of the central metabolism may be inferred, separately, from the biological components of the network.
For example, for a block diagonal Jacobian matrix in our settings, indeterminate sign determinant of
one block trivially implies indeterminate sign determinant for the entire matrix. In particular, we may
concentrate on the bottom part of the network, only assuming that J1 = J2 in the upper part.
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BIOLOGICAL MR-GRAPH (Biological)

Figure 3. This subnetwork focuses on the Tricarboxylic cycle and the Glyoxylate cycle.
It possesses only two Child Selections, depending on the child of ICT. In fact, note that
reaction 17 is the single child of OAA and reaction 27 is the single child of Glyoxylate. Due
to injectivity of Child Selections, then, AcCoA also has only one child: reaction dd8.

In figure 3, we have depicted the chosen subnetwork possessing precisely only the two chosen Child
Selections J1 and J2. We identify the metabolite mb, such that J1(mb) , J2(mb), as ICT = mb. Indeed,
any other metabolite m , ICT possesses a single child J1(m) = J2(m), and only ICT possesses two
child reactions: reaction 19 and reaction 26. Let us call J1 the Child Selection such that J1(ICT ) = 19
and J2 the Child Selection such that J2(ICT ) = 26. With this choice of Child Selections, metabolites
Lactate, Acetate, and Ethanol result disconnected from the rest of the network and have consequently
been omitted here.

By looking at the MR-graph representation, we can easily conclude that J1 well-behaves and J2

ill-behaves. Note indeed that J1 does not contain any completion cycle, and therefore well-behaves.
In fact, this Child Selection contains only one network cycle c = MAL − 23 − OAA − 17 − AcCoa −
27 − MAL, which is not a completion cycle as the edge AcCoa − 27 is not J1-selected. On the other
hand, the completion cycles structure of J2 is identical to Example 1, which had provided a simple and
recognizable pattern of an bad Child Selection. In fact, this Child Selection possesses only two bad
completion cycle c1 and c2:

1. c1 = ICT − 26 −Glyoxylate − 27 − MAL − 23 − OAA − 17 −CIT − 18 − ICT ;
2. c2 = ICT − 26 − S UC − 21 − FUM − 22 − MAL − 23 − OAA − 17 −CIT − 18 − ICT .

Since it possesses only two intersecting bad completion cycles, the Child Selection J26 ill-behaves. In
particular, in accordance to Theorem 5.1, the parameter

ξ = r19mb − r26mb , (where mb = ICT ), (6.1)

controls a change of sign of the Jacobian determinant of the entire system, for a certain region of
parameters.
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Remark 9. The choice of reaction 19 and 26 basically highlights the difference between the Tricar-
boxylic acid cycle (reaction 19) and the Glyoxylate cycle (reaction 26). Our analysis suggests how the
control of certain dynamical properties of the metabolism of a cell is related to its network structure.

7. Discussion

In this paper, we have presented a new approach to address questions related to the Jacobian
determinant for dynamical systems arising from metabolic networks. The idea of our approach relies
on considering the partial derivatives r jm(x∗) independent, at a fixed equilibrium x∗, from the value
of the equilibrium x∗ itself and from the value r j(x∗) attained by the reaction rates at the equilibrium.
Importantly, this allows us to separate the question of the existence of the equilibrium, which concern
the reaction rates r j, from the questions related to the stability of the equilibrium, which concern the
derivatives r jm. In particular, we interpret the Jacobian determinant as a homogeneous multilinear
polynomial in the variables r jm. The coefficients of each monomial are determinants of reshuffled
stoichiometric minors S J, and we have given network conditions to establish the sign of det S J.

Mass action kinetics forbids considering the partial derivatives r jm as free parameters, at an
equilibrium. Still, the present structural analysis of the Jacobian determinant holds identically also for
the mass action case. In particular, a Jacobian determinant of fixed sign is still a sufficient condition
to exclude saddle-node bifurcations also under mass action kinetics, and the copresence of both good
and bad Child Selections is therefore still a necessary condition. However, in the case where the sign
of the Jacobian depends on the parameters r jm, we are not able to directly conclude on equilibria
bifurcations, for mass action systems, given that the existence of the equilibrium depends as well
on related parameters. Hence, the consistency between the parameter constraints coming from the
existence of the equilibrium and the constraints coming from the Jacobian determinant must be
additionally checked. This introduces a further difficulty in bifurcation analysis under mass action
kinetics.

Most of the arguments can be lifted to any dynamical system of the form

ẋ = Ar(x),

where A is any real matrix (see [22]). However, the efficacy of this approach is most exploited for the
case where A = S is a sparse matrix with low integer entries, as it is the case of stoichiometric matri-
ces of metabolic networks. In this context, our approach provides bifurcation patterns and biological
intuition.

Theorem 5.1 prescribes how to find parameters for a change of stability of equilibria. In particular,
we shall find one good Child Selection J1 and one bad Child Selection J2 such that J1(mb) , J2(mb)
for a single metabolite mb, and J1(m) = J2(m) for all other metabolites m , mb.

We point out that finding good Child Selections is reasonably easy, in metabolic networks. As an
example, the sparsity of the stoichiometric matrix S as well as the overall presence of outflows make
the task of finding acyclic Child Selections simple and, by Corollary 4.2, acyclic Child Selections are
always good. An analogous argument supporting the predominance of good Child Selections follows
by the fact that many reactions in a metabolic networks are monomolecular, always via 4.2.
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Morally, then, the fewer bad Child Selections are the important ones to be found in the quest
for parameter areas where bifurcations and changes of stability take place. This last observation
underlines the importance to find simple and recognizable patterns of bad Child Selections. Example
1 of this paper is possibly one of those examples. Designed as the simplest example of a bad Child
Selection on three metabolites, it turned out to possess a cycle structure that was easy to recognize in
the real example of the central carbon metabolism of Escherichia coli.

Previous studies addressed equilibria bifurcations in the central carbon metabolism of E. coli.
In [27] the authors have numerically studied bifurcations in the restricted E. coli model proposed by
Chassagnole and coauthors [28]. They have focused on saddle-node bifurcations and Hopf bifurca-
tions. In a similar flavor to the present paper, their bifurcation parameters are associated to individual
reactions j. In particular, the rate r j is written as r j = k jg(x), where k j is a scalar and g(x) the given
kinetics. They use the scalars k j as bifurcation parameters. However, changing this parameter also
influences the reference equilibrium x∗. For mathematical simplicity, in contrast, our approach fixes
x∗ and changes the partial derivative r jm, only. With these adaptations in mind, our analytical results
match their numerical explorations well. For example, consider the following subnetwork from their
restricted model:

(7.1)

Here reactions 1, 2, 4, 5 are outflow reactions, and PYR is not an input to any other reaction. Their
bifurcation diagram for the two parameters (k1, k2) is similar, qualitatively, as for (k1, k3). Qualitatively
similar diagrams also appear when considering the couples (k1, k4) and (k1, k5). This is consistent
with our Child Selections point of view. Indeed: assume that J is any good Child Selection with
J(PEP) = 2. Then, it is good also the Child Selection J̃ such that J̃(PEP) = 3 and J̃(m) = J(m) for
any other metabolite m, because the cycle structure remains identical: the subnetwork (7.1) is acyclic.
The same argument holds also for the other two ‘sisters’, reactions 4 and 5. Our analysis consistently
suggests that the two parameters k2 and k3 (k4 and k5, respectively) are bifurcation parameters that can
be used in an analogous way, qualitatively.

The absence of equilibria bifurcations in the E. coli network, both for mass action and Michaelis-
Menten kinetics, has been claimed in [29]. Curiously, that study misses the sign changes of the Jaco-
bian determinant, which we encounter for the Michaelis-Menten case.

Mathematically, global Hopf bifurcation of time periodic oscillations of the E. coli network, and
specifically for the citric acid cycle part, has also been established along the lines of our present
analysis [21].

There are several applications of the theory presented in this paper. Firstly, our theory suggests
promising bifurcations parameters based on network information, only. In large systems, finding bi-
furcation parameters for numerical simulations is not a simple task. Our recipe of finding two Child
Selections, one good and one bad, serves as an aid for this purpose. However, for realistic explanation
of metabolic phenomena the mathematical approach should best be combined with deep biological
insight. Further, the tools developed here also apply to sensitivity analysis of equilibria. See the
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thesis [22] where - in the same setting - responses to perturbations of reaction rates and metabolites
concentration have been studied. The responses may have a definite sign for all parameters, or that
sign may depend on the parameters choice, pretty much in the same spirit as presented in the present
paper. The case in which the sign of the responses depends on the parameters suggests the possibility
of controlling the sign, as the responses may be positive or negative depending on the parameters. For
example, note that stable equilibria x∗ require the sign of the Jacobian to be (−1)M for M metabolites.
Such control may therefore indicate external switches between different stable metabolic pathways, or
may even induce stem cell differentiation.

8. Proofs

This Section is devoted to the proofs of our results. We start with Proposition 2.1.

Proof of Proposition 2.1. We apply the Cauchy-Binet formula on G = S R to obtain:

det G =
∑
|E|=M

det S E · det RE =
∑
|E|=M

det S E (
∑
π

sgn(π) ·
∏
m∈M

rπ(m)m). (8.1)

Here π indicates a permutation of M elements and sgn(π) is the signature (or parity) of π. Note that∏
m∈M rπ(m)m , 0 if and only if there is an associated Child Selection J such that rJ(m)m = rπ(m)m, for

every m. In particular, the sum runs non trivially only for the selected minors S E such that the set E is
the image of M through a Child Selection J. Now,∑

|E|=M

det S E (
∑
π

sgn(π) ·
∏
m∈M

rπ(m)m) =
∑
E=J(M)

det S E (
∑

J

sgn(J) ·
∏
m∈M

rJ(m)m)

=
∑

J

det S J ·
∏
m∈M

rJ(m)m.
(8.2)

Last step is the observation:
det S E=J(M) · sgn(J) = det S J. (8.3)

�

We proceed with the proof of main technical result, Theorem 3.1.

Proof of Theorem 3.1. The proof follows an idea of Banaji and Craciun [7]. Firstly note:

(det S J)(−1)M =(det S J) E(Id )

=
∑
π

E(π)E(Id )

=1 +
∑
π,Id

E(π)E(Id ).

(8.4)

Let h be the number of elements m such that π(m) , m. That is, h is the number of elements of π which
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are not fixed points of the permutation, but belong to a permutation cycle.

E(π)E(Id ) = sgn(π)

∏
m∈M

S J
π(m)m

 sgn(Id )
∏
m∈M

S J
mm

=

 ∏
m: π(m)=m

(S J
mm)2

 ϑ∏
i=1

sgn(ci)

 ∏
m: π(m),m

(S J
π(m)mS J

mm)


= (−1)h

ϑ∏
i=1

sgn(ci)
∏

m: π(m),m

S J
π(m)m

= (−1)ϑ
∏

m: π(m),m

S J
π(m)m.

(8.5)

The steps above are made noting that (S J
mm)2 ≡ 1, for any m and that, for a cycle c of length `,

sgn(c)(−1)` = −1. We conclude the proof by observing that

(−1)ϑ
∏

m: π(m),m

S J
π(m)m = 1 (-1, respectively) (8.6)

if π is a good-completion (bad-completion, respectively). This yields to the identity

det S J(−1)M = 1 + G − B, (8.7)

which proves the Theorem. �

The interpretation of the above result has been discussed in the Proposition 4.1 and consequent
Corollary 4.2.

Proof of Proposition 4.1. Let us consider the computation (8.5) in the proof of Theorem 3.1. Consider,
for simplicity, a single cycle permutation π = c and concentrate on the expression∏

m: c(m),m

S J
c(m)mS J

mm. (8.8)

Note that the diagonal elements S J
mm and S J

c(m)c(m) represents J-selected edges. S c(m)m shares the same
column (i.e., reaction vertex) with S J

mm and the same row (i.e., metabolite vertex) with S J
c(m)c(m). Fol-

lowing the order of the cycle c in the Expression (8.8) leads to the desired identification. �

Proof of Corollary 4.2. easily

1. Acyclic Child Selections do not possess any completion cycle and consequently do not possess
any completion. By Theorem 3.1, G = B = 0, and thus acyclic Child Selections well-behave.

2. Analogously, a Child Selection J possessing only one good cycle possesses only one good com-
pletion. By Theorem 3.1, G = 1, B = 0, and thus J well-behaves.

3. As in (2), with G = 0, B = 1. Via Theorem 3.1 we have the conclusion.
4. Since a completion is a collection of non-intersecting completion cycles, then two intersecting

completion cycles implies two different completions. As above, both completions must be bad.
Hence, again by Theorem 3.1, G = 0, B = 2.
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5. Note that a non-zero Child Selection J, det S J , 0, a priori, cannot contain monomolecular cycles
of the form:

m0 −→ m1 −→ ... −→ m0,

where each reaction is monomolecular, i.e.

mi −→ mi+1.

Therefore, for a non-zero Child Selection J possessing only monomolecular reactions and a single
bimolecular reaction j̃ of the form (4.4), either J does not contain any completion cycle and
consequently well-behaves, due to point (1) of this corollary, or J contains completion cycles in
the MR-graph which include j̃ as a reaction vertex. In particular all completion cycles intersects.
Without loss of generalities, assume J−1( j̃) = A. We only have two possibilities for a completion
cycle: a bad completion cycle containing the two adjacent edges A − j̃ −C or a good completion
cycle containing the two adjacent edges A− j̃−B. By assumption on the network, the completion
cycles run through monomolecular reactions only, except from j̃. Because they do intersect, we
have at most one bad completion, G ≤ 1, and one good completion, B ≤ 1. Hence, 1 − G + B ≥ 0
and by Theorem 3.1 the Child Selection J does not ill-behave. Since, by assumption, J does not
zero-behave, it must well-behave.

�

The last remaining proof is Theorem 5.1. We introduce some concepts, first. The set of Child
Selections {J} carries a natural integer-valued distance d.

Definition 6. Let J1, J2 be two Child Selections. We define the distance d(J1, J2) as the number of
metabolites m ∈M such that J1(m) , J2(m).

It is straightforward to verify that d is a distance on the set of Child Selections. We consider now
Child Selections at distance d = 1. These are Child Selections J1, J2 such that J1(mb) , J2(mb) for a
single metabolite mb and J1(m) = J2(m) for any m , mb different from mb, as in Theorem 5.1. Clearly:

det S J1
∏

m

rJ1(m)m + det S J2
∏

m

rJ2(m)m

= rJ1(m1)m1 · ...(det S J1rJ1(mb)mb + det S J2rJ2(mb)mb)... · rJ1(mm)mm

(8.9)

If we further assume that J1 and J2 are such that one well-behaves and the other ill-behaves we have:

det S J1rJ1(mb)mb + det S J2rJ2(mb)mb = a · rJ1(mb)mb − b · rJ2(mb)mb , (8.10)

with a and b constants of the same sign.

By the mere fact that d is an integer-valued distance, any other Child Selection satisfies

d(Jk, J1), d(Jk, J2) ≥ 1, for any k , 1, 2. (8.11)

In particular, we have the following Lemma:
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Lemma 8.1. Let J1 and J2 be Child Selections at distance d = 1, that is, J1(mb) , J2(mb) and
J1(m) = J2(m) for any m , mb. For any other Child Selection Jk, there is a metabolite mk such that
Jk(mk) , J1(mk) and Jk(mk) , J2(mk).
Moreover if d(Jk, J1) = d(Jk, J2) = 1, then mk = mb.

Proof. Let us consider any mk such that J1(mk) , Jk(mk). If J2(mk) , Jk(mk), we are done. Assume
then that J2(mk) = Jk(mk). By construction, mk = mb. Consider now any m̃k such that J2(m̃k) , Jk(m̃k)
and remember that J1(m) = J2(m) for any m , mb. We conclude that J1(m̃k) , Jk(m̃k). Otherwise,
we would have found two metabolites mk and m̃k such that J1(mk) , J2(mk) and J1(m̃k) , J2(m̃k),
contradicting d(J1, J2) = 1.
In the above argument, note that if J2(mk) = Jk(mk), then d(J1, Jk) ≥ 2. Hence, if d(J1, Jk) = d(J2, Jk) =

1 we conclude that J1(mb) , J2(mb) , Jk(mb) and hence mk = mb. �

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let J1 and J2 be Child Selections, as above. In particular, distance d(J1, J2) = 1.
By Lemma 8.1, for any other Child Selection Jk , J1, J2 we can find mk such that

J1(mk), J2(mk) , Jk(mk). (8.12)

We can consider, then, an ε-small choice of reaction rate parameters such that

rJk(mk)mk < ε. (8.13)

Then, for this ε-choice of reaction rates,

det G = (arJ1(mb)mb − brJ2(mb)mb)rJ1(mn+1)mn+1 ...rJ1(mm)mm + ε. (8.14)

The parameter ξ = arJ1(mb)mb − brJ2(mb)mb becomes then a bifurcation parameter for the sign of the
Jacobian determinant. �
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